3'-deoxy-3'-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography.

نویسندگان

  • Henryk Barthel
  • Marcel C Cleij
  • David R Collingridge
  • O Clyde Hutchinson
  • Safiye Osman
  • Qimin He
  • Sajinder K Luthra
  • Frank Brady
  • Pat M Price
  • Eric O Aboagye
چکیده

3'-Deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) has been proposed as a new marker for imaging tumor proliferation by positron emission tomography (PET). The uptake of [(18)F]FLT is regulated by cytosolic S-phase-specific thymidine kinase 1 (TK1). In this article, we have investigated the use of [(18)F]FLT to monitor the response of tumors to antiproliferative treatment in vivo. C3H/Hej mice bearing the radiation-induced fibrosarcoma 1 tumor were treated with 5-fluorouracil (5-FU; 165 mg/kg i.p.). Changes in tumor volume and biodistribution of [(18)F]FLT and 2-[(18)F]fluoro-2-deoxy-D-glucose ([(18)F]FDG) were measured in three groups of mice (n = 8-12/group): (a) untreated controls; (b) 24 h after 5-FU; and (c) 48 h after 5-FU. In addition, dynamic [(18)F]FLT-PET imaging was performed on a small animal scanner for 60 min. The metabolism of [(18)F]FLT in tumor, plasma, liver, and urine was determined chromatographically. Proliferation was determined by staining histological sections for proliferating cell nuclear antigen (PCNA). Tumor levels of TK1 protein and cofactor (ATP) were determined by Western blotting and bioluminescence, respectively. Tumor [(18)F]FLT uptake decreased after 5-FU treatment (47.8 +/- 7.0 and 27.1 +/- 3.7% for groups b and c, respectively, compared with group a; P < 0.001). The drug-induced reduction in tumor [(18)F]FLT uptake was significantly more pronounced than that of [(18)F]FDG. The PET image data confirmed lower tumor [(18)F]FLT retention in group c compared with group a, despite a trend toward higher radiotracer delivery for group c. Other than phosphorylation in tumors, [(18)F]FLT was found to be metabolically stable in vivo. The decrease in tumor [(18)F]FLT uptake correlated with the PCNA-labeling index (r = 0.71, P = 0.031) and tumor volume changes after 5-FU treatment (r = 0.58, P = 0.001). In this model system, the decrease in [(18)F]FLT uptake could be explained by changes in catalytic activity but not translation of TK1 protein. Compared with group a, TK1 levels were lower in group b (78.2 +/- 5.2%) but higher in group c (141.3 +/- 9.1%, P < 0.001). In contrast, a stepwise decrease in ATP levels was observed from group a to b to c (P < 0.001). In conclusion, we have demonstrated the ability to measure tumor response to antiproliferative treatment with [(18)F]FLT and PET. In our model system, the radiotracer uptake was correlated with PCNA-labeling index. The decrease in [(18)F]FLT uptake after 5-FU was more pronounced than that of [(18)F]FDG. [(18)F]FLT is, therefore, a promising marker for monitoring antiproliferative drug activity in oncology that warrants additional testing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging Cellular Proliferation in Prostate Cancer with Positron Emission Tomography

Prostate cancer remains a major public health problem worldwide. Imaging plays an important role in the assessment of disease at all its clinical phases, including staging, restaging after definitive therapy, evaluation of therapy response, and prognostication. Positron emission tomography with a number of biologically targeted radiotracers has been demonstrated to have potential diagnostic and...

متن کامل

Preclinical Applications of 3'-Deoxy-3'-[18F]Fluorothymidine in Oncology - A Systematic Review

The positron emission tomography (PET) tracer 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) has been proposed to measure cell proliferation non-invasively in vivo. Hence, it should provide valuable information for response assessment to tumor therapies. To date, [18F]FLT uptake has found limited use as a response biomarker in clinical trials in part because a better understanding is needed of the...

متن کامل

FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3'-deoxy-3'-[18F]fluorothymidine.

Positron emission tomography (PET) using the radiotracer 3'-deoxy-3'-[(18)F]fluorothymidine (FLT) can image cellular proliferation in human cancers in vivo. FLT uptake has been shown to correlate with pathology-based proliferation measurements, including the Ki-67 score, in a variety of human cancers. Unlike pathology-based measurements, imaging-based methods, including FLT-PET, are noninvasive...

متن کامل

Preliminary 19F-MRS Study of Tumor Cell Proliferation with 3′-deoxy-3′-fluorothymidine and Its Metabolite (FLT-MP)

The thymidine analogue 3'-deoxy-3'-[18F]fluorothymidine, or [18F]fluorothymidine ([18F]FLT), is used to measure tumor cell proliferation with positron emission tomography (PET) imaging technology in nuclear medicine. FLT is phosphorylated by thymidine kinase 1 (TK1) and then trapped inside cells; it is not incorporated into DNA. Imaging with 18F-radiolabeled FLT is a noninvasive technique to vi...

متن کامل

An Assessment of Early Response to Targeted Therapy via Molecular Imaging: A Pilot Study of 3′-deoxy-3′[(18)F]-Fluorothymidine Positron Emission Tomography 18F-FLT PET/CT in Prostate Adenocarcinoma

Fluorothymidine is a thymidine analog labeled with fluorine-18 fluorothymidine for positron emission tomography (18F-FLT-PET) imaging. Thymidine is a nucleic acid that is used to build DNA. Fluorine-18 fluorothymidine (18F-FLT) utilizes the same metabolic pathway as does thymidine but has a very low incidence of being incorporated into the DNA (<1%). 18F-FLT-PET could have a role in the evaluat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 63 13  شماره 

صفحات  -

تاریخ انتشار 2003